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Abstract

This project aims to build a QA system that gives accurate answers for reading
comprehension tasks on the SQuAD 2.0 dataset. On top of the BiDAF baseline
model (F1: 59.716, EM: 55.807), we experimented with the combinations of
character embeddings, self-attention mechanisms, self-attention and CNN encoder
blocks and coattention mechanisms. For each approach, we experimented with
either slight modifications of the model structure or different hyperparameters.
Then the best approaches are incorporated into our compound model. Our best
model combines the baseline with character embeddings, coattention, and self-
attention to produce a test accuracy of F1:63.894 (+4.178 on baseline) and EM:
60.168 (+4.361 on baseline). This project shows that the combination of different
attention approaches work well together to further improve the performance of the
model.

1 Introduction

Question-Answering (QA) has been an essential part of Natural Language Processing. This task is
especially challenging for machines since they need to first understand the question and then extract
the correct knowledge to answer the question. As one of the hottest research fields in NLP, the
improvement in QA algorithms shows how AI is better understanding human language structure,
meaning, and reasoning. Powerful real-world applications include question answering on search
engines and virtual assistants.

This project focuses on highlighting accurate answers for reading comprehension tasks on the SQuAD
2.0 dataset. While many prior research have been done on approaches like self-attention and co-
attention separately, this project verifies that these improving results are reproducible, and further
shows that the combination of these approaches work well together to improve the performance more.

2 Related Work

The baseline model employs a technique called bi-directional attention flow (BiDAF) [1] to help
obtain a query-aware context representation. One difference between the provided baseline and
the BiDAF model is that BiDAF includes a character embedding layer at the beginning while the
baseline does not. The BiDAF paper inspired us to implement and experiment with the character
embedding layer. Character embedding is very useful when out-of-vocabulary words appear in the
corpus because not every word shows up in the word embeddings and character embedding learns the
internal structure of words to avoid this problem.

Wang et al. [2] designed an attention-based recurrent network, which inspired us to experiment with
self-attention mechanisms on top of the original BiDAF attention layer, which only has context-to-
query attention and query-to-context attention. Using self-attention helps the model to aggregate
information and evidence from the whole passage, matching the question-aware passage represen-
tation to itself and making up the deficiency in the baseline. In addition, we were inspired by the
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QANet paper [3] to implement stacked encoder blocks with CNN and self-attention mechanisms to
replace the single layer of self-attention, utilizing a similar architecture to transformer encoders to
provide the advantage of multiple layers of self-attention.

Another type of attention, coattention, was proposed by Xiong et al. [4], which attends to the passage
and the question at the same time, and combines both together to calculate the coattention encoding.
It inspired us to implement coattention along with self-attention in our model.

3 Approach

3.1 Architecture and Baseline

The architecture of our model contains 8 layers as shown in the figure below (left to right). The
layers labeled in black are from the baseline model; the ones in red are our modified layers. Details
of the baseline model is in section 4 of the Project Handout [5]. As for our modifications, we
added a character embed layer to account for out-of-vocabulary words. We added coattention to the
original BiDAF attention flow layer. We also added a self-attention layer on top of the attention flow
layer/coattention layer to aggregate information and evidence from the whole passage, along with
another modeling layer to further refine the vectors. For the self-attention layer, we experimented
with additive self-attention, casual self-attention with multiple heads, or stacked self-attention and
CNN encoder blocks. (Our final model uses 1 head casual self-attention). We implemented the layers
and models ourselves unless otherwise specified.

3.2 Character Embedding

Our first main approach is to add a character embedding layer at the beginning of the model, and to
incorporate it with the word embedding layer to improve the performance. Inspired by the BiDAF
paper [1], we created this layer to map each word to a vector space from character-level using
convolution neural networks (CNNs). We first used the character-level embeddings to convert each
character in the words to vectors. We fed the vectors as input to a CNN and applied one-dimensional
max pooling over the output to obtain a fixed-size (which is the hidden size) vector. Then we
concatenated the character embeddings with word embeddings together as the input for the next layer
instead of only using the word embeddings.

3.3 Self Attention

Our second main approach is adding a self-attention layer on top of the context-to-question attention
and question-to-context attention (between baseline modeling and output layer), as shown in the
architecture graph. This approach is inspired by Wang et al. [2] to aggregate information and evidence
from the whole passage, matching the question-aware passage representation (xP

t ) to itself.

We first calculated the similarity matrix, then passed it through a softmax function to obtain the
weights a, and multiplied the weights to original vector values of each word to obtain c. The self-
attention output is then concatenated with the original input x and passed through a bi-directional
LSTM modeling layer to refine the vectors.

hP
t = BiRNN(hP

t−1, [x
P
t , ct])

3.3.1 Additive Self Attention

Additive attention was used in the original paper [2], where the attention between two vectors is
calculated by: (stj is the similarity between xP

t and xP
j )

stj = vTxtanh(WP
x xP

j +W P̃
x xP

t ) ati = exp(sti)/

n∑
j=1

exp(stj) ct =

n∑
i=1

atix
P
i
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Additive self attention provides additional expressiveness due to the nonlinearity in similarity matrix
calculation. However, this approach has very expensive computation and storage costs. Thus, we also
experimented with causal self-attention.

3.3.2 Causal Self Attention

We experimented with single and multi-head causal self-attention which was inspired by CS224N
lectures. The attention is calculated by: (Ci is the output of one attention head. Q, K, V are Key,
Query, Value matrix used for causal self attention. d is the total dimensionality. h is the number of
heads.)

Si =
(XQi)(XKi)

T√
d/h

Ai = softmax(Si) Ci = Ai (XVi)

Causal self attention allows interaction between input vectors directly because of the dot product,
which provides more localized attention. It also reduces training time and storage needed. We
referenced the attention file in assignment 5 when coding our multi-head causal self-attention.

3.4 Self Attention and CNN Encoder Block

On top of 3.3, we wanted to experiment with more layers of self-attention in our model. We did
not simply stack more self-attention layers on each other without adding non-linear layers since that
would achieve similar results as increased-head causal self-attention. Instead, we were inspired by
the encoder blocks of transformers [6] and the QANet paper [3], which lead us to create our own
encoder block structure, as shown below:

We first passed the input vectors through the depthwise separable convolutional sub-block two
times to aggregate the weighted information from the input vectors. Then it is passed through the
self-attention sub-block, which uses the causal self attention we implemented in 3.3.2. Finally it
passes through a feedforward layer that introduces non-linearity. In each sub-block, a layernorm and
a connection layer are added to allow the model to train faster. We used the depthwise separable
convolution function from [7], but implemented the encoder blocks ourselves. With multiple blocks
stacked together, we hypothesize that it achieves the advantage of using multiple self-attention layers.

3.5 Coattention

We first added a sentinel vector at the end of both passage (D) and question matrix (Q). This
allows words to not attend to any word in the input if the words do not match. We also added a
projection layer for the question encoding to introduce non-linearity (Q = tanh(WQ + b)). Then
we calculated the affinity matrix (L = DTQ). Further on, we normalized the affinity matrix to
calculate attention weights (AQ = softmax(L), AD = softmax(LT )), and computed the summaries
of the passage(CQ = DAQ) and question (QAD). Next we calculated the summaries of the previous
attention contexts taking each word of the passage into consideration and combining with the summary
of the question.

[QAD, CQAD] ⇒ CD = [Q;CQ]AD

Viewing them together (CD), we have a co-dependent representation of the question and the passage,
which is the coattention context, and needs to be passed through a bidirectional LSTM to build
coattention encoding.
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4 Experiments

4.1 Data and Evaluation Method

We are using the official SQuAD 2.0 dataset containing 129,941 training examples, 6,078 eval
example, and 5,915 test examples. We will be evaluating our results from the F1 and EM (exact
match) metrics as mentioned in the Default Project Handout [5].

4.2 Experiment Details

For the training process of the models, we used a learning rate of 0.5, dropout probability of 0.2, seed
of 224, and trained the model for 30 epochs, unless otherwise specified.

Similar to the word embedding, we added the character embedding by loading in the pretrained
character vectors. We added a 1-dimensional CNN layer with the input size of the character embedding
size, the output of hidden_size, and the kernel size of 5. A 1-dimensional max pooling is applied
on the CNN output with a kernel size of the innermost dimension of the CNN output, followed by a
dropout layer. In the character embeddings experiment we doubled the hidden_size parameter (to
200) since we wanted to keep the original input-to-hidden-layer size ratio. We experimented with
different learning rates (0.1, 0.3, 0.5, 0.7, 0.9) and dropout rates (0.1, 0.2, 0.3) as our hyperparameter
tuning. (Please see results section.) The training time for each epoch increased to about 40 minutes
on the Azure virtual machine.

For self-attention, we experimented with additive self-attention and causal self-attention with 1,2,4
heads. We also experimented with the dropout residual (see results section). We followed the
dimensions and equations in 3.3 for the implementation, and initialized all parameters randomly. We
kept the original hidden size of 100. Since additive self-attention is computationally expensive, the
training time increased to around 60 minute per epoch. The training time for causal self-attention is
around 35 minutes per epoch.

For the self-attention and CNN encoder block layer, we used 2 CNN layers, each with kernel size of
5 and hidden size of 100. We stacked 3 encoder blocks in our model, sharing weights between them.
The training time is around 40 minutes per epoch.

For the coattention mechanism, our implementation followed the equation details we explained in
3.5. We used a hidden size of 100. We otherwize used the default parameters mentioned above. The
training time is around 30 minutes per epoch.

4.3 Experiment Results

Please see the following tables for our experiment results. We did 4 sets of experiments: 1) baseline +
character embedding 2) baseline + self-attention 3) baseline + self-attention CNN encoder block 4)
Compound models combining baseline + character embedding + coattention + self-attention. For each
set, we experimented with either varying hyperparameters or slightly changing the model structure.
F1 and EM scores are dev eval results unless otherwise specified (for the final model).

Ref Number Model Learning Rate Dropout Rate F1 EM

#0 Baseline 0.5 0.2 60.06 56.86
#1 Baseline + Char Emb 0.1 0.2 60.92 57.65
#2 Baseline + Char Emb 0.3 0.2 61.55 58.02
#3 Baseline + Char Emb 0.5 0.2 63.66 60.12
#4 Baseline + Char Emb 0.7 0.1 63.47 60.34
#5 Baseline + Char Emb 0.7 0.2 63.78 60.04
#6 Baseline + Char Emb 0.7 0.3 61.81 58.51
#7 Baseline + Char Emb 0.9 0.2 63.06 59.82

4



Plots for models #0 - #7 in the above character embedding results table

We did 6 character embedding experiments by changing the learning rate and dropout rate. The best
result is given by model #5 (learning rate=0.7 and dropout rate=0.2), yielding a dev eval result of
F1:63.78 and EM:60.04. The second best model #3 (learning rate=0.5 and dropout rate=0.2) has very
similar F1 and EM scores as #7. Since model #7 was a later experiment we did, we used model #3 as
our character embedding model in the compound models.

Ref Number Model # of Heads Add Residual
Dropout F1 EM

#0 Baseline NA NA 60.06 56.86
#8 Baseline + Additive Self Attention NA NA 61.14 57.62
#9 Baseline + Causal Self Attention 4 T 61.42 57.69

#10 Baseline + Causal Self Attention 2 T 61.66 58.09
#11 Baseline + Causal Self Attention 1 T 61.71 58.48
#12 Baseline + Causal Self Attention 1 F 62.30 58.85

Plots for models #0 and #8 - #12 in the above self attention results table

For the baseline + self-attention experiments, results show that additive self-attention performs worse
than causal self-attention. 1 head causal self-attention performs better than 2 head and 4 head causal
self-attention. And the model without an addition residual dropout performs better. The best model
in this section is the 1 head causal self-attention without an additional residual dropout layer (#12),
yielding a dev eval result of F1: 62.30, EM: 58.85. We used this 1 head causal self-attention model
for our compound models.

Ref Number Model F1 EM

#0 Baseline 60.06 56.86
#13 Baseline + Encoder Block (3 blocks) 60.25 56.68

The result of the encoder block is not as high as we expected, yielding only a slight improvement
with a dev evaluation of F1: 60.25, EM: 56.68. We will analyze the reasons to this in the next section.
This model did not make it into our final compound model.
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Ref
Number Model Hidden

Size
Add Residual

Dropout
Modeling

Layer F1 EM

#0 Baseline 100 NA NA 60.06 56.86

#14 Baseline + Char Emb +
Self Attention 200 T T 63.41 60.33

#15 Baseline + Char Emb +
Self Attention 200 F T 63.50 59.65

#16 Baseline + Char Emb +
Self Attention 100 F T 63.67 60.14

#17 Baseline + Char Emb +
Self Attention 100 F F 64.46 61.28

#18 Baseline + Char Emb +
Coattention + Self Attention 100 F T 64.55 60.96

Plots for models #0 and #14 - #18 in the above compound models results table

In our compound model experiments, we first experimented with combining baseline+char embedding
+ self-attention, then experimented with combining all of baseline+char embedding + self-attention +
coattention. We have concluded that hidden size=100 performs better than hidden size=200, and an
additional residual dropout layer should not be added. Removing the modeling layer between the
context-to-question/question-to-context attention and self-attention layer also improves performance.

Ref Number Model F1 (Test Result) EM (Test Result)

#0 Baseline 59.716 55.807

#17 Baseline + Char Emb +
Self Attention 62.819 (+3.103) 59.394 (+3.584)

#18 Baseline + Char Emb +
Coattention + Self Attention 63.894 (+4.178) 60.168 (+4.361)

We choose compound model #17 and #18 to evaluate on the test set. Compared to the baseline model,
combining baseline+char embedding + self-attention + coattention (#18) yields the highest scores of
F1: 63.894 (+4.178) and EM: 60.168 (+4.361). This is the final best model of our paper.

5 Analysis

5.1 Model Analysis

5.1.1 Character Embeddings

When we implemented the character embedding layer for our model, we chose to use 200 as our
hidden size (which is twice of the original hidden size) for all layers after it, because the input size
is doubled for those layers and we want to keep the original ratio between the input size and the
hidden size. The addition of character embedding layer significantly improved the performance and
F1 and EM scores. Both scores go up about 3 points. This performance improvement is within our
expectation. It indicates that a character-level embedding layer is important and useful in our scenario
because when it meets out-of-vocabulary words, it could still learn the internal structure of those

6



words, while only using word embeddings could not. Our experiment results verifies our hypothesis
about character embedding.

5.1.2 Self Attention

Causal self attention worked well as we expected. However, additive self attention did not. We were
surprised at first since additive self attention provides additional nonlinearity expressiveness in its
similarity matrix calculation. After closer analysis, we realized that additive self attention lacks the
direct interaction between input that causal self attention has through the dot product of two vectors in
its similarity matrix calculation, which provides more localized attention. Due to this reason, causal
self attention out performs additive self attention.

5.1.3 Self Attention and CNN Encoder Block

The Self attention and CNN Encoder Block did not work as well as expected. The accuracy
improvement is very limited. We think there are mainly two reasons. Most importantly, compared
to the QANet paper [3], we added an RNN modeling layer after the BiDAF attention before the
encoder blocks in our architecture, but the original paper added the encoder blocks directly after
the context-query attention. This could be a problem since the encoder block relies on positional
information to perform CNN and self-attention. However passing the BiDAF attention through an
LSTM aggregates information in the different positions and loses positional information encoding.
Another reason is that the paper [3] used the intermediate output of different encoder blocks for the
final position prediction, but we only relied on the output of the final layer of the encoder block. A
next step direction is to experiment with encoder blocks that do not have a modeling layer after the
BiDAF attention, and use intermediate block outputs for answer predictions.

5.1.4 Coattention

The coattention mechanism has some but not outstanding performance improvement. It increased the
test F1 and EM scores by around 1 point each compared to the model that did not use coattention. This
result is slightly unexpected since we were expecting larger improvements. After closely analyzing
the coattention and the original attention flow layer in the baseline model, we found out that they both
share some common computation process, for example, the way context is attended to the question
(dot product, softmax used). This overlap shows that they may extract similar information from input
vectors, which explains why coattention did not improve the baseline (which already uses BiDAF
attention) by a large margin.

5.2 Training Evaluation

During our experiments with character embedding, we found that among the three models with a
learning rate of 0.7, a smaller dropout rate would cause slight overfitting. The graph below shows the
negative log-likelihood dev loss for the three models, where the orange line represents the model
with a dropout rate of 0.1. It stopped minimizing and began rising in its midway, while its training
loss kept on decreasing.

We also found that the model with a smaller learning rate has dev F1 and EM scores that fluctuate
less than the one with a larger learning rate. Please see Appendix A for the detailed graph plotting.
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5.3 Final Model Text Qualitative Evaluation

For error analysis, we are comparing the baseline model with our final model (#18).

Generally, our model #18 was able to predict long answers better, as shown in the below example,
while the baseline model could not locate the correct answer and predicted N/A.

We found two general errors in our final model: 1) when there are synonyms in the question and the
correct answer, the model is not able to identify the synonyms and thus unable find the answer. In the
example below, the phrase “insufficiently long” is a synonym for “too brief”, which should be an
indication that the answer is in or around this phrase, but the model failed to find the answer.

2) We also found out that our model #18 often predict slightly incorrectly when the answer involves
numbers. Especially for propositional words around year/time.

6 Conclusion

In this project, we experimented with various character embeddings, self-attention mechanisms,
self-attention and CNN encoder blocks and coattention mechanisms on top of the BiDAF baseline
model. We achieved a final F1 score of 63.894 and EM score of 60.168 in our baseline BiDAF +
character embeddings + coattention + 1 head causal self-attention model (#18), which improved the
baseline F1 score by +4.178 and the baseline EM score by +4.361.

In previous papers, there are results that show how each singe approach improves the F1 and EM
scores. In our project, we verified that these improving results are reproducible, and further showed
that the combination of these approaches work well together to improve the performance more.

A limitation of this model is that it concatenates vectors at each position instead of allowing the
model to learn a weighed average. For example, we concatenated the coattention output with the self-
attention output instead of allowing a weighting mechanism for the model to learn the importance of
each. This also means that the vectors at each position becomes longer as more attention mechanisms
are used, thus increasing computation cost. One future work is to add weights for the model to learn
the importance of each mechanism and combine them in the best way.

Another future work is to provide a voting mechanism like ensemble learning to combine the different
attention mechanisms. Currently we are stacking the different attention mechanisms together in one
model, but it may be beneficial to create a model with each mechanism and ensemble them to get the
final output.
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A Appendix

Affect of learning rate on dev EM and F1 in character embedding experiments:

From the graph above, we can see that the pink line, which corresponds to the model with a learning
rate of 0.1, is much more smooth than the red line with a learning rate of 0.9.
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